Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Microbiol ; 132(2): 1435-1448, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1383398

ABSTRACT

AIMS: Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS: Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY: Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .


Subject(s)
Laundering , Textiles , Detergents
2.
J Appl Microbiol ; 132(2): 1489-1495, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1365083

ABSTRACT

AIM: The air indoors has profound health implications as it can expose us to pathogens, allergens and particulates either directly or via contaminated surfaces. There is, therefore, an upsurge in marketing of air decontamination technologies, but with no proper validation of their claims. We addressed the gap through the construction and use of a versatile room-sized (25 m3 ) chamber to study airborne pathogen survival and inactivation. METHODS AND RESULTS: Here, we report on the quantitative recovery and detection of an enveloped (Phi6) and a non-enveloped bacteriophage (MS2). The two phages, respectively, acted as surrogates for airborne human pathogenic enveloped (e.g., influenza, Ebola and coronavirus SARS-CoV-2) and non-enveloped (e.g., norovirus) viruses from indoor air deposited directly on the lawns of their respective host bacteria using a programmable slit-to-agar air sampler. Using this technique, two different devices based on HEPA filtration and UV light were tested for their ability to decontaminate indoor air. This safe, relatively simple and inexpensive procedure augments the use of phages as surrogates for the study of airborne human and animal pathogenic viruses. CONCLUSIONS: This simple, safe and relatively inexpensive method of direct recovery and quantitative detection of viable airborne phage particles can greatly enhance their applicattion as surrogates for the study of vertebrate virus survival in indoor air and assessment of technologies for their decontamination. SIGNIFICANCE AND IMPACT OF THE STUDY: The safe, economical and simple technique reported here can be applied widely to investigate the role of indoor air for virus survival and transmission and also to assess the potential of air decontaminating technologies.


Subject(s)
Air Pollution, Indoor , Bacteriophages , COVID-19 , Viruses , Air Microbiology , Air Pollution, Indoor/analysis , Animals , Humans , SARS-CoV-2 , Vertebrates
3.
Infect Control Hosp Epidemiol ; 43(4): 552, 2022 04.
Article in English | MEDLINE | ID: covidwho-1111939

Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2
4.
Function (Oxf) ; 1(1): zqaa002, 2020.
Article in English | MEDLINE | ID: covidwho-936392

ABSTRACT

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.

5.
PeerJ ; 8: e9914, 2020.
Article in English | MEDLINE | ID: covidwho-789840

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.

SELECTION OF CITATIONS
SEARCH DETAIL